Y5/6 Top-up Revision, Unit 1 (56718)

Additional teacher instructions for practice sheets
These notes indicate which practice sheets are most appropriate for which groups.
Day 1 Y5 Factors and multiples Sheet 1
Working towards ARE / Working at ARE / Greater Depth
Day 1 Y6 Factors and multiples Sheet 2
Working towards ARE / Working at ARE / Greater Depth
Day 2 Y5 Prime numbers and square numbers Sheet 1
Working towards ARE / Working at ARE / Greater Depth
Day 2 Y6 Prime numbers and square numbers Sheet 2
Working towards ARE / Working at ARE / Greater Depth

Factors and multiples

Sheet 1

1. List ALL the factors of $\mathbf{1 2}$.
2. List ALL the factors of 18 .
3. Write two different multiples of 3 and 5 .
4. Write two common factors of 18 and 24.
5. 23458

Choose a pair of numbers and write a common multiple. Repeat three times.
6. 1215242730

Choose two numbers and write a common factor.
Repeat three times.
7. Write a common multiple of 2,3 and 4.
8. Write a common factor of 15,20 and 30 .
9. Sometimes / Always / Never? Numbers have an even number of factors.

Challenge

Sophie says, "The bigger a number, the more factors it has." Do you agree with her?

Factors and multiples

Sheet 2

1. List the pairs of factors of 24.
2. Tick the numbers which are common factors of 18 and 24 .

2
3
4
6
8
9
3. Write two factors of 40 which are NOT factors of 30.
4. Write a common multiple of 3 and 6 which is NOT a multiple of 12.
5. Write these numbers under the correct headings.

2	3	4	5	6	8	9	12

Factor of 15	Factor of 16	Multiple of 3

6. Write three common multiples of 2,3 and 4. What is the lowest common multiple?
7. Write three common multiples of 3,4 and 6 . What is the lowest common multiple?
8. Write three common factors of 24,30 and 48.

What is the highest common factor?
9. If a number has 10 as a factor, what other three factors must it have?
10. If a number has 6 as a factor, what other three factors must it have?

Challenge

Maria says, "Numbers always have a pair of factors, so there aren't any numbers with an odd number of factors."
Do you agree with her?

Prime numbers and square numbers

Sheet 1

Circle the prime number in each set of three numbers.

1. $3,9,18$
2. $4,5,10$
3. $7,9,12$
4. $12,15,17$
5. $21,23,25$
6. $31,33,35$
7. $27,37,57$
8. $53,54,55$

Write a square number within each range.
9. 10 to 20
10. 20 to 30
11. 60 to 70
12. 80 to 90

Challenge

How many 2-digit prime numbers have digits with a total of 10 ?

Prime numbers and square numbers

Sheet 2

1. $27,31,42$

Circle the prime number.
Explain how you know that the other two numbers are not prime.
2. $37,57,77$

Circle the prime number.
Explain how you know that the other two numbers are not prime.
3. A square number and a prime number have a total of 27. What could the two numbers be? Are there any other possible pairs?
4. A square number and a prime number have a total of 41.

What could the two numbers be? Are there any other possible pairs?
5. List the prime numbers between 30 and 40 .
6. List the prime numbers between 50 and 60 .
7. List the square numbers between 50 and 100 .
8. List the odd square numbers less than 100.

Challenge

13 and 31 are prime numbers. Find other pairs of prime numbers with reversed digits.

Top-up Revision

Answers

Day 1 Y5 Factors and multiples Sheet 1

1. Factors of 12

1,12	2,6	3,4

2. Factors of 18
3. $18 \quad 2,9 \quad 3,6$
4. Two multiples of 3 and 5
e.g. $15,30,45,60$..
5. Two common factors of 18 and 24 e.g. 2, 3,6
6. 23458 common multiples Answers from: 2 and 3
e.g. 6, 12, 18, 24 ...

2 and $4 \quad$ e.g. $8,12,16,20,24 \ldots$
2 and 5 e.g. $10,20,30,40,50 \ldots$
2 and 8 e.g. $8,16,24,32,40$...
3 and 4 e.g. 12, 24, 36, 48 ...
3 and 5 e.g. 15, 30, 45, 60...
3 and 8 e.g. 24, 48, 72, 96...
4 and 5 e.g. $20,40,60 \ldots$
4 and 8 e.g. 8, 16, 24, 32...
5 and 8 e.g. $40,80,120 \ldots$
6. 1215242730 common factors

Answers from: 12 and $15 \quad 1$ and 3
12 and 24 1, 2, 4, 6, 12
12 and $27 \quad 1$ and 3
12 and $30 \quad 1,2,3,6$
15 and $24 \quad 1$ and 3
15 and $27 \quad 1$ and 3
15 and $30 \quad 1,3,5$ and 15
24 and $27 \quad 1$ and 3
24 and $30 \quad 1,2,3$ and 6
27 and $30 \quad 1$ and 3
7. Common multiple of 2, 3 \& 4 e.g. 12, 24, 36...
8. Common factor of $15,20 \& 30 \quad 5$
9. Sometimes. The square factors have an odd number of factors, e.g. 36: 1,$36 ; 2,18 ; 3,12 ; 4,9 ; 6$.

Challenge

No, we don't agree with Sophie. Some large numbers do have a lot of factors, e.g. 80 has 10 factors and 96 has 12 factors, but 97 , larger than 80 and 96 , has just two factors: 1 and 97.

Day 1 Y6 Factors and multiples Sheet 2

1. Pairs of factors of 24
2. Common factors of 18 and 24 ticked
3. Factors of 40 but not of 30

1, $24 \quad 2,12 \quad 3,8$
4, 6
2. 3 and 6

4 and 8
4. Common multiple of 3 and 6 but not of 12 e.g. 18, 30, 42
5.

Factor of 15	Factor of 16	Multiple of 3
3,5	$2,4,8$	$6,9,12$

Top-up Revision

Answers

Day 1 Y6 Factors and multiples Sheet 2 continued

6. Common multiples of $2,3,4 \quad 12$ (lowest), 24, 48, 60...
7. Common multiples of $3,4,6 \quad 12$ (lowest), 24, 36,48...
8. Common factors of $24,30,48 \quad 2$ (lowest), 3, 6
9. If a number has 10 as a factor it also has 1,2 and 5
10. If a number has 6 as a factor it also has 1,2 and 3

Challenge

Maria is wrong - some numbers do have an odd number of factors: the square numbers, e.g. 4: 1, 4, 2; 16: 1,16, 2, 8, 4 ; 25: 1, 25, 5.

Day 2 Y5 Prime numbers and square numbers Sheet 1
Numbers circled:

1. 3
2. 5
3. 7
4. 17
5. 23
6. 31
7. 37
8. 53

Square numbers:
9. 16
10. 25
11. 64
12. 81

Challenge

2-digit prime numbers with a total of 10: 19, 37, 73

Day 2 Y6 Prime numbers and square numbers Sheet 2

1. 31 is the prime number. 27 and 42 are not prime as they can be divided by numbers other than 1 and themselves.
2. 37 is the prime number. 57 and 77 are not prime as they can be divided by numbers other than 1 and themselves.
3. Prime number + square number $=27$, e.g. $23+4,11+16$ and $2+25$
4. \quad Prime number + square number $=41$, e.g. $37+4$ and $5+36$
5. Prime numbers between 30 and $40: 31,37$
6. Prime numbers between 50 and $60: 53,59$
7. Square numbers between 50 and $100: 49,64,81$
8. Odd square numbers less than 100: $1,9,25,49,81$

Challenge
Pairs of prime numbers with reversed digits: 17 and 71,37 and 73,79 and 97.

